Literature
首页合作平台医学论文基础医学论文遗传学

基因表达差异分析方法进展

来源:中国病理学网
摘要:高等真核生物的基因组一般具有80000~100000个基因,而每一个细胞大约只表达其中的15%[1]。基因在不同细胞间及不同生长阶段的选择性表达决定了生命活动的多样性,如发育与分化、衰老与死亡、内环境稳定、细胞周期调控等。比较细胞间基因表达的差异为我们揭示生命活动的规律提供了依据。由于真核细胞mRNA3′端一般含......

点击显示 收起

  高等真核生物的基因组一般具有80 000~100 000个基因,而每一个细胞大约只表达其中的15%[1]。基因在不同细胞间及不同生长阶段的选择性表达决定了生命活动的多样性,如发育与分化、衰老与死亡、内环境稳定、细胞周期调控等。比较细胞间基因表达的差异为我们揭示生命活动的规律提供了依据。

  由于真核细胞 mRNA 3′端一般含有 poly( a)尾,因此现有的方法基本上都是利用共同引物将不同的 mRNA反转录成 cDNA,以 cDNA为对象研究基因表达的差异。1992年 Liang等[2]建立了一种差异显示反转录 pCR法( differential display reverse transcription PCR, dDRT-PCR),为检测成批基因表达的差异开辟了新天地。迄今为止已出现了大量应用该技术的研究报道[3,4]。然而,尽管应用 dDRT-PCR方法已经取得了不少成果,而且该方法还在不断改进之中,但它仍然存在几个难以解决的问题:(1)重复率低,至少有20%的差异条带不能被准确重复[5];(2)假阳性率可以高达90%[6];(3)获得的差异表达序列极少包含编码信息。近年来,针对 dDRT-PCR方法的不足,又有几种新的检测差异表达基因的方法出现,现仅就这方面的进展做一简要介绍。

  1.基因表达指纹( gene expression fingerprinting, gEF): gEF技术使用生物素标记的引物 bio-T13合成 cDNA第一链,用 dGTP对其进行末端加尾,再以富含 c的引物引发合成 cDNA第二链。用限制性内切酶消化双链 cDNA,以交联有抗生物素蛋白的微球捕获 cDNA3′端,以 t4DNA连接酶连接同前述内切酶相对应的适配子,并以 bio-T13及适配子中的序列作为新的引物进行特异的 pCR扩增,得到大量的特异 cDNA片段。适配子末端被32P-dATP标记后,固定于微球上的 cDNA片段经过一系列酶切,产生的酶切片段从微球表面释放出来,其中那些含有标记末端的片段经凝胶电泳后构成 mRNA指纹图谱。通过分析不同细胞间的指纹图谱就能得到差异表达的序列[7]。 gEF技术所需的工作量较 dDRT-PCR明显减少,由于用酶切反应替代了条件不严格的 pCR反应,其重复性也较好,假阳性率低,并且所获得的片段中包含有一定的编码信息。 gEF技术最大的缺点在于电泳技术的局限。由于它的指纹图谱要显示在同一块电泳胶上,经过几轮酶切之后常会得到1 000~2 000条电泳带,而现有的 pAGE电泳很少能分辨超过400条带,故只有15%~30%的 mRNA能够被辨认出来,因此得到的只能是高表达基因。如果希望寻找部分新基因,这是一种比较简单有效的方法;如果希望得到有关某种细胞的基因表达谱,可能比较困难;采用双向电泳技术可能会有所帮助[8]。

  2.基因表达系统分析( serial analysis of gene expression, sAGE): sAGE法的建立基于两条理论。首先,一段来自某个转录子确定位置的核苷酸,其长度只要有9~10个 bp,就能够特异地确认该转录子。第二,对短片段标签的链接有利于在同一克隆中对多个标签测序。 sAGE也是用生物素标记的 bio-Oligo(dT)为引物合成双链 cDNA,然后以限制酶(锚定酶)进行酶切,捕获 cDNA3′端。在此处产物被分为两部分,分别与包含有 iIS型内切酶(标签酶)位点的 a、 b连接子相接。 iIS型内切酶的特点是作用位点处于识别位点之外。这样经过酶切,就有可能得到只有9~10bp的标签序列。每两个标签的钝端结合后成为 pCR的模板,以基于 a、 b连接子的引物进行 pCR反应的结果是得到了大量每条包含两个不同来源标签的序列,接下来再用锚定酶酶切、连接,就能将多个不同的标签链接在一起(大约为每条包含数十个不同来源的标签),克隆至质粒载体中后集中测序[9,10]。 sAGE的最终结果是通过计算机统计得到的,根据某个标签出现频率的高低来判断并计算其所属基因表达的丰度。对于在数据库中找不到对应序列的标签,还可以利用13bp的寡核苷酸探针(9bp加上锚定酶识别位点的4bp)对 cDNA文库进行筛选,以寻找新基因。 sAGE可以检测不同细胞间已知基因表达的具体差异,精确到每个细胞中大约有多少拷贝,可以建立较全面的基因表达谱,系统地分析基因表达的差异。它的缺点在于工作量非常大,有大量的测序及计算机分析任务;而且,对于寻找新基因而言,仅用长度为13bp的寡核苷酸探针筛选 cDNA文库是很不严格的,根据我们的经验,往往是假阳性结果居多。

  3 . cDNA3′端限制酶切片段显示( display of 3′ end restriction fragments of cDNAs):cDNA3′端 rFD利用带有“踵”结构的锚定 oligo(dT)引物合成 cDNA第一链,以 okayama和 berg的置换法合成 cDNA第二链,然后将双链 cDNA以限制酶消化。本方法的适配子由 a1和 a2两条寡核苷酸构成,其序列与所用限制酶识别位点相符合,先将 a2的5′端磷酸化,再加入 a1退火,就会形成一个 y型结构;把 y型适配子与酶切后的 cDNA片段相连接,以适配子及锚定引物中所含序列为特异引物进行 pCR反应,则只有 cDNA3′末端的一段被扩增出来,这时的产物可用凝胶电泳表示出来构成差异表达图谱。对于每次切割6bp的限制酶来说,每种大概只能切割8%的 cDNA,因此至少需要12种以上的限制酶才能使所有 cDNA都显示出来[11]。 cDNA3′端 rFD与 gEF的思路比较相似,由于它利用多种限制酶进行酶切,因此不会象 gEF因凝胶电泳分辨率不够而漏掉信息。它的重复性较好,假阳性率低,尤其是对于已知基因,可以根据选择内切酶的作用位点确定该基因在凝胶电泳中的位置并判断其含量,从而避免了进一步的分析。对于精力有限的研究人员,这可能是个值得一试的方法。 cDNA3′端 rFD方法也存在一些和 dDRT-PCR相类似的缺点,它得到的片段中包含的编码信息比较少,需要多花一些时间对所得到的差异条带进一步分析。

  4.分子指数的 rNA指纹( rNA fingerprinting by molecular indexing, mI):MI是一种能够较好地显示 mRNA中编码序列的方法。它利用Ⅱ s型内切酶的作用位点在识别位点之外可以形成一个4bp的突出端的特点,设计43共64种(最外侧一个核苷酸随机)适配子,使得获取编码序列片段成为可能。首先是以常规方法合成双链 cDNA,用Ⅱ类限制酶进行酶切后连接5′端磷酸化的相应适配子,再以Ⅱ s类

作者: 石胜军夏照帆 2004-9-23
医学百科App—中西医基础知识学习工具
  • 相关内容
  • 近期更新
  • 热文榜
  • 医学百科App—健康测试工具