点击显示 收起
Department of Ophthalmology, University of Essen, Hufelandstrasse 55, 45122 Essen, Germany
Department of Ophthalmology, University Hospital Benjamin Franklin, Free University Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
Department of Paediatric Oncology, University of Essen, Hufelandstraße 55, 45122 Essen, Germany
Accepted for publication 8 August 2002
ABSTRACT |
---|
Top ABSTRACT PATIENTS AND METHODS RESULTS DISCUSSION REFERENCES |
---|
Methods: Tumour response and side effects of TCT with an indirect laser ophthalmoscope (spot size about 400 µm) in 55 tumours of 26 children with bilateral retinoblastoma were analysed. Using the Reese-Ellsworth classification system, nine of 35 eyes were classified as type I, 13 eyes as type II, 10 eyes as type III, and three eyes as type V. The mean age of the children was 0.74 (SD 0.61) years. The mean tumour height was 3.5 (2.3) mm with a mean diameter of 6.1 (4.1) mm. Treatment parameters were 4.3 (1.6) (median 5) thermochemotherapy sessions with a mean energy of 539 (211) mW and a mean duration of 13.5 (5.6) minutes. Chemotherapy courses (vincristine, etoposide, and carboplatin) were repeated every 3 weeks. The mean follow up period was 1.25 (0.6) years.
Results: Local recurrence occurred in 21 tumours (38%), with a mean onset of 3.2 (2.9) months after TCT. The risk of tumour recurrence was correlated with tumour height. The recurrence rate was 17% for tumours with a height less than 2 mm, 37% for tumours with a height between 2 and 4 mm, and 63% for larger retinoblastomas. Multivariate analysis identified fish flesh regression after TCT (p = 0.0007) as the most important risk factor for tumour recurrence besides tumour height (p = 0.001) and the necessity of increased laser power during TCT sessions (p = 0.018). Complications during therapy included transient corneal opacification in two eyes (6%), focal iris atrophy (three eyes, 8.5%), peripheral lens opacity (two eyes, 6%), circumscribed transient retinal detachment (one eye, 3%) and diffuse choroidal atrophy (one eye, 3%).
Conclusion: TCT using an indirect laser ophthalmoscope with a spot size of about 400 µm was efficient for retinoblastoma with a tumour height less than 4 mm. In larger tumours, the recurrence rate was unacceptably high. Fish flesh regression after TCT correlates with a higher rate of local tumour recurrence. Treatment related complications occurred in less than 9% of the treated eyes.
Keywords: retinoblastoma; chemotherapy; hyperthermia; laser coagulation
Treatment of advanced bilateral retinoblastoma has changed during the past 10 years. A decade ago external beam radiotherapy (EBR) was part of the standard strategy in the treatment of this hereditary disease. Publications in the early 1990s showed an increased risk for non-ocular malignancies after EBR in retinoblastoma patients with a germline mutation. This cumulative risk for secondary cancers was estimated to be 35% until the age of 30 years, and presumably higher if EBR was performed during the first year of life.1–4 As a consequence of this threatening long term complication, new treatment strategies for advanced bilateral retinoblastoma were developed.
Possible alternatives include intensified use of local treatments such as cryotherapy, laser coagulation, or brachytherapy with low energy or ß ray plaques. Owing to limitations of these treatments, however, EBR could not be replaced in advanced disease.5–8 Chemotherapy had been an established treatment for extraocular extension of retinoblastoma,9 although a significant effect of systemic chemotherapy on intraocular retinoblastoma was observed.10–13 Chemotherapy alone, however, does not lead to complete destruction of intraocular retinoblastoma.14 Only the combination of systemic chemotherapy with local treatments such as laser or cryocoagulation or brachytherapy results in acceptable local tumour control rates.10,12,15 Another variation of a combined treatments is thermochemotherapy (TCT)—that is, the combination of chemotherapy with local tumour hyperthermia. The amplification of the cytotoxic effect of platinum analogues was demonstrated in cell lines,16,17 and in phase I/II studies in retinoblastoma.12,18 A transpupillary infrared diode laser system can be used to selectively increase the temperature in the tumour, with the intention of avoiding adverse side effects in surrounding normal ocular tissues. Transpupillary thermotherapy is normally used for the treatment of tumours at the posterior pole of the eye. Treatment of tumours in the periphery of the retina may produce an increased rate of severe thermal side effects in the anterior segment of the eye. During treatment of anterior tumours in the eye the effective diameter of the pupil is reduced by the consequential angle between the laser beam and the optic axis of the eye. If the laser beam hits the iris there is a consecutive increased risk for thermal effects in the iris resulting in iris burns and focal lens opacifications with subsequent visual impairment
New approaches with trans-scleral application are currently the subject of investigation and may avoid these side effects.19,20 The first clinical results of thermotherapy and TCT are encouraging.20,21
Since May 1997 we have treated advanced intraocular retinoblastoma with systemic chemotherapy and selected tumours in the affected eyes were treated in combination with local hyperthermia. The purpose of this retrospective study was to identify safe indications, complications, and limitations of the new treatments.
PATIENTS AND METHODS |
---|
Top ABSTRACT PATIENTS AND METHODS RESULTS DISCUSSION REFERENCES |
---|
The indication for thermochemotherapy was an untreated retinoblastoma posterior to the equator in children with bilateral retinoblastoma. We included small juxtapapillary, juxtamacular, or submacular retinoblastoma, and large retinoblastoma at the posterior pole where massive visual impairment was expected after single local treatment with laser coagulation or brachytherapy. In cases with an exudative retinal detachment, chemotherapy was initially given to reduce the tumour size followed by thermochemotherapy after the subretinal fluid had resolved.22 Twenty four tumours of 12 children (14 eyes) received this initial chemoreduction. The treatment protocol for initial chemoreduction is listed in Table 1. In these cases, the mean number of chemoreduction cycles before the start of thermochemotherapy was 2.6 (SD 1.2, median 2.5; range 1–5). No other treatments were used before thermotherapy in the 55 evaluated tumours. Tumours in the periphery of the retina not eligible for thermotherapy were treated either by cryotherapy or laser coagulation or by ß ray brachytherapy, depending on their location and size. Exclusion criteria for this study were unilateral sporadic disease, functional blindness, tumour infiltration of the optic disc, or tumour extension into the anterior segment of the eye.
|
|
|
Statistical analysis was performed using the SAS system for multivariate analysis and JMP statistical package for descriptive and univariate statistics. In multivariate statistics end point for Cox proportional hazard analysis was local tumour recurrence after TCT or enucleation respectively external beam radiotherapy of the eye. Univariate statistical analysis was performed using Wilcoxon ranked pair test for continuous parameters and contingency table with 2 test for nominal parameters. The continuous and discrete clinical variables were tested as predictors for complete tumour destruction after TCT using a multivariate model. For parts of univariate statistical testing the treated tumours were divided in groups depending on initial tumour height (tumour height less than 2 mm, between 2 and 4 mm, and more than 4 mm) respectively in groups with or without local tumour recurrence.
Some analysed parameters were calculated based on ultrasound measurements and documented laser settings. The total energy used for the treatment of the tumours was calculated as the sum of the product of laser power and duration of the treatment sessions in the individual tumour. In addition, a hypothetical cone-shaped tumour volume based on the initial mean diameter and the initial tumour height was calculated using the formula: volume = (mean diameter x tumour height x )/3. Based on these parameters the relative applied energy per mm3 tumour volume was calculated by dividing the calculated total energy applied to the tumour during all treatment sessions by the initial tumour volume.
RESULTS |
---|
Top ABSTRACT PATIENTS AND METHODS RESULTS DISCUSSION REFERENCES |
---|
The treatment parameters for three groups of retinoblastoma with a tumour height less or equal to 2 mm, between 2 and 4 mm, and for tumours larger than 4 mm are listed in Table 4. The number of TCT session was smaller for tumours with a height less than 2 mm, but there was no significant difference between the groups with larger retinoblastoma tumours. The laser power, total duration of TCT, as well as the applied energy during the whole TCT was tiered for larger tumours. The calculated mean relative energy per tumour volume was significantly smaller for larger retinoblastoma (Table 4).
|
|
|
The mean follow up period was 1.6 (0.6) years after the first presentation of the children and 1.25 (0.6) years (range 1 month to 2.3 years) after cessation of thermochemotherapy. A local tumour recurrence after TCT occurred in 21 tumours (38%) in 16 eyes of 15 children (Figs 3 and 4). The mean interval between the end of TCT and the diagnosis of tumour recurrence was 3.2 (2.9) months (median 2.6 months; range 1 week to 12 months).
|
|
Univariate statistical analysis was performed to find significant differences between the groups with and without tumour recurrence. The results are listed in Table 5. The group with recurrence showed a significantly larger tumour diameter and tumour height, while the distance between the tumour and the optic disc, the age of the children or the number of tumours at the beginning of TCT did not have any statistical effect on tumour recurrence. Further treatment parameters such as the number of TCT sessions or the total duration of the treatment did not influence tumour recurrence. The mean laser power and the mean total energy used during the TCT sessions as well as the mean energy per tumour volume showed significantly larger values in the group with tumour recurrence. The majority of recurrent tumours showed an initial tumour height of more than 2 mm, only four tumours with recurrence were smaller than 2 mm. If statistical analysis was performed selectively for tumours with a height of more than 2 mm, the mean relative energy per tumour volume showed a significant smaller value than in the group without recurrence (Table 5).
|
DISCUSSION |
---|
Top ABSTRACT PATIENTS AND METHODS RESULTS DISCUSSION REFERENCES |
---|
In this retrospective study, we had a very high local recurrence rate in tumours with a height of more than 2 mm. This high rate in larger tumours occurred despite longer laser exposure time and higher laser power delivered during TCT. The idea of laser energy input in a defined tumour volume appears to be a useful model to describe the physical effect of thermotherapy.
Correlation of the applied energy with the initial tumour volume showed a coincidence between massive reduced energy levels per tumour volume and local tumour recurrence (Table 4). Assumed that the total energy per tumour volume applied to the tumour during TCT may be a parameter for the incline of the temperature in the tumour, we have to conclude that this intended objective of thermotherapy was not achieved in larger tumours. A further increase in energy level and duration during TCT appears to be an obvious solution to increase the effect of thermotherapy in these tumours. Side effects such as laser absorption in the anterior segment or haemorrhage in the tumour limit the amount and duration of energy, however, which can be applied.
The laser spot size is important in thermotherapy. The diameter of the laser beam in this study was about 400 µm in emmetropic or slightly hyperopic patients. Other groups used a laser delivery system attached to a microscope.20 This device allows larger spot sizes between 800 µm and 2000 µm, which produce larger and deeper hyperthermia zones with significant temperature related tumour destruction.12,20,21,27 If the results of transpupillary thermotherapy in melanoma are applicable in retinoblastoma, the decrease of temperature around the laser area might be about 5°C per mm distance.27 Depending on the temperature within the direct laser area (during treatment unknown) and the depth of maximal light absorption in the tumour tissue, it could be supposed that tumour parts around the laser area became heated to a temperature less than the critical 45°C. The smaller the ratio between spot size and tumour size, the higher seems to be the risk of areas with insufficient incline of temperature. An argument for this theory is our observation that recurrences after TCT normally occur at the border or at the apex of the regressed tumours (Fig 4). The small spot size might be one possible explanation for the high local recurrence rate in this study, in particular in larger tumours. The reason for the four recurrent tumours in initially small sized retinoblastoma might be an insufficient absorption of infrared light in flat scars after the first session of TCT. The typical finding in these cases was a recurrence within unpigmented areas in the scar (Fig 3).
To identify risk factors after TCT, we compared the group with and without tumour recurrence. Multivariate analysis identified fish flesh regression following TCT as the most important predictor for a local recurrence (risk ratio 4.88) apart from greater tumour height and necessity of higher laser power to achieve a discoloration of the retinoblastoma during TCT. An explanation for the high risk ratio of fish flesh regression after TCT might be that viable tumour cells were judged as a fish flesh or a mixed regression type (type III).
Recurrent tumours were treated in the majority of cases by laser coagulation or ß ray brachytherapy. Indications for the latter were recurrences at the apex of the regressed tumour or multifocal recurrences in the treatment area after TCT. External beam radiotherapy was necessary in four eyes of two children and was indicated by recurrent vitreous seeding or multifocal recurrent subretinal seeds in the periphery of the retina. Regular control under general anaesthesia and immediate additional local treatment allowed preserving 94% of the eyes. Only two eyes in this group had to be enucleated due to virtual blindness.
The results of this retrospective study should be judged with caution. The indication for TCT was based on the idea to bypass EBR in advanced cases. With an eye salvaging rate of 94% our results are comparable to the results published after EBR. TCT was part of a complex treatment plan including different treatments in the same eye during the same treatment period. It is not possible to exclude influences of the additional local treatment on TCT. Based on our experience, we suggest primary TCT with an indirect ophthalmoscope and a small laser spot size for juxtapapillary or juxtamacular retinoblastoma if the central margin of the tumour is very close to these critical structures. If TCT results in a partial or complete fish flesh regression, additional local treatment or, at least, regular short term follow up is recommended. In larger tumours, TCT with a small laser spot size resulted in a high recurrence rate. The decision for systemic chemotherapy with its possible short and long term side effects must be made with great hesitancy. External beam radiotherapy in bilateral retinoblastoma induced secondary non-ocular malignancies decades after treatment.1 Serious side effects of systemic chemotherapy in retinoblastoma cannot be excluded.28–30 Whenever possible, local treatment options such as laser coagulation, cryotherapy, or brachytherapy with ray or ß ray plaques should be preferred. The larger the retinoblastoma treated by TCT with small laser spot sizes, the higher the risk for a local recurrence. Regular control under general anaesthesia after cessation of TCT and immediate local treatment of recurrent tumours result in an excellent long term tumour control rate in retinoblastoma.
REFERENCES |
---|
Top ABSTRACT PATIENTS AND METHODS RESULTS DISCUSSION REFERENCES |
---|