Literature
Home医源资料库在线期刊中华实用医药杂志2006年第6卷第23期

低氧诱导因子-1α与肿瘤演进

来源:中华实用医药杂志
摘要:低氧诱导因子-1α与肿瘤演进(pdf)【摘要】低氧诱导因子-1α(hypoxia-induciblefactor-1α,HIF-1α)的肿瘤表达谱相当广泛。同时HIF-1α在肿瘤的演进中扮演重要角色,表现于肿瘤细胞永生化、基因组不稳定性、肿瘤血管生成、肿瘤细胞能量代谢、肿瘤自分泌生长因子信号转导、肿瘤侵袭转移以及肿瘤耐药等各层面。HIF-1......

点击显示 收起

    低氧诱导因子-1α与肿瘤演进  (pdf)

    【摘要】  低氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)的肿瘤表达谱相当广泛;同时HIF-1α在肿瘤的演进中扮演重要角色,表现于肿瘤细胞永生化、基因组不稳定性、肿瘤血管生成、肿瘤细胞能量代谢、肿瘤自分泌生长因子信号转导、肿瘤侵袭转移以及肿瘤耐药等各层面。HIF-1α已被列为肿瘤分子靶向治疗的重要目标蛋白之一。

    【关键词】  低氧诱导因子-1α;肿瘤转移;分子靶向

     HIF-1α在肺癌、胃癌、肝癌、肾癌、食道癌、结肠癌、乳腺癌、宫颈癌、卵巢癌、膀胱癌、口咽癌、头颈癌、子宫内膜癌、恶性黑色素瘤、少突神经胶质细胞瘤及星形胶质细胞瘤等肿瘤细胞中均呈异常高表达。近年来,HIF-1α与肿瘤的发生发展、侵袭转移以及肿瘤耐药之间的关系尤为受到关注。基于肿瘤细胞培养及移植肿瘤(tumor xenograft)模型的实验进展在分子病理学层面揭示了HIF-1α在肿瘤演进中扮演的重要角色。

    1  HIF-1α与肿瘤细胞永生化

    人类肿瘤细胞永生化需要由TERT基因编码的端粒酶的转录激活。TERT基因的5’端侧翼区(flanking region)存在低氧反应元件(hypoxia response element, HRE),通过与HRE的结合,HIF-1α激活端粒酶转录表达,从而实现细胞的永生化[1,2]。

    2  HIF-1α与基因组不稳定性

    与正常体细胞相比,肿瘤细胞对于损伤DNA的修复能力大大降低[3]。DNA错误配对修复系统(mismatch repair, MMR)通过纠正DNA复制错误以及防止非同源DNA间的重组,以保持基因组的完整性。错误配对修复蛋白MutSα为异二聚体,其中一条链由MSH2基因编码而另一条由MSH6基因编码。在非低氧情况下,由SP1、C-Myc及P53蛋白共同构成的复合体控制MSH2和MSH6的转录激活。低氧时,HIF-1α可通过与SP1作用而替代C-Myc及P53,从而抑制MSH2和MSH6基因的转录[4]。另外,跨损伤DNA合成(translesion DNA synthesis, TLS),又称为损伤旁路(damage bypass)是近年来新发现的参与DNA修复的又一机制。TLS包括无错损伤旁路(error-free lesion bypass)及易错损伤旁路(error-prone lesion bypass);易错损伤旁      路可导致DNA损伤诱导的突变。DNA聚合酶ι(DNA polymerase ι, Pol ι)是易错损伤旁路的重要  参与酶之一,包括乳腺癌在内的多种肿瘤细胞Pol ι呈高表达,而HIF-1α则可诱导Pol ι的生成[5,6]。

    3  HIF-1α与肿瘤血管生成

    功能获得(gain-of function)及功能缺失(loss-of –function)的研究均表明,HIF-1α可调控促血管生成因子angiopoietin-1、angiopoietin-2、胎盘生长因子(placental growth factor, PLGF)、血小板源生长因子B(platelet-derived growth factor B, PDGF-B)以及血管上皮生长因子(vascular endothelial growth factor, VEGF)的产生[7]。体外结肠癌细胞实验表明:HIF-1α高表达可增加VEGF产量,促进肿瘤血管生成及移植肿瘤的生长[8]。相反,在体外胃癌细胞的实验中发现:阻断HIF-1α表达可降低VEGF产量,导致肿瘤血管发展缺陷,并抑制移植肿瘤的生长[9]。另外,内皮细胞HIF-1α缺失可导致肿瘤血管生成受抑制[10]。

    4  HIF-1α与葡萄糖转运及糖酵解

    如Warburg现象[11]所述:即使在正常氧的条件下,肿瘤细胞的糖代谢依然较正常体细胞活跃。HIF-1α调控葡萄糖转运蛋白GLUT1、GLUT3以及糖酵解酶HK1、HK3、PFKL、ALDA、ALDC、GAPDH、PGK1、PGM、ENO1、PKM、LDHA[12]。在人类乳腺癌细胞实验中发现,HIF-1α与糖代谢活性密切相关[13]。巨噬细胞依赖于糖酵解产生的ATP而维持其功能,HIF-1α缺失的巨噬细胞ATP含量显著减少,同时其参与炎症反应的能力受到极大程度损害[14]。

    5  HIF-1α与自分泌生长因子信号传导

    肿瘤细胞的存活与增殖依赖于自分泌信号转导途径-肿瘤细胞自身在分泌生长因子的同时表达生长因子受体。结肠癌细胞表达胰岛素样生长因子-1受体(insulin-like growth factor-1 receptor, IGF-1R)及胰岛素样生长因子-2(insulin-like growth factor-2, IGF-2),而IGF-2是HIF-1α调控基因[15]。结肠癌细胞IGF-1R信号转导可通过PI3K及ERK途径分别激活HIF-1α转录[16];HIF-1α高表达可增加IGF-2量,加强IGF-1R酪氨酸激酶活性,进一步通过PI3K和ERK途径促进肿瘤细胞的存活与增殖。在肾癌细胞中存在类似的情况。肾癌细胞同时表达表皮生长因子受体(epidermal growth factor receptor, EGFP)及其配体转化生长因子-α(transforming growth factor-α, TGF-α);而TGF-α是HIF-1α调控基因[17]。在内皮细胞中,HIF-1α在自分泌VEGF-VEGFR信号转导通路中扮演关键角色[10]。

    6  HIF-1α与肿瘤侵袭转移

    肿瘤侵袭转移意味着突破基底膜的限制。肿瘤细胞实现其侵袭要求:其一是完成由上皮表型向间质表型的转变。上皮表型抑制肿瘤细胞的侵袭,原因是其刚性骨架蛋白及强大的细胞间作用;相反,间质表型细胞则具备柔性骨架蛋白和弱化的细胞间作用,这是肿瘤实现侵袭所必需的。HIF-1α可通过调控波形蛋白(vimentin)及角蛋白(keratin)促进肿瘤细胞表型转换[18]。其二,肿瘤细胞实现其侵袭转移必须解除细胞外基质的束缚,这有赖于基质金属蛋白酶(matrix metalloproteinases, MMPs)、组织蛋白酶(cathepsins)、尿激酶纤溶酶原激活物复合物及其受体[urokinase plasminogen activator (UPA)-UPA receptor (UPAR)]。HIF-1α可促进cathepsin D、MMP-1、MMP-2、UPAR的基因转录及表达[19,20]而实现基质降解。同时,HIF-1α可激活碳酸酐酶IX,通过降低细胞内pH以促进侵袭[21]。另外,HIF-1α可激活c-Met和自分泌移动因子(autocrine motility factor),增强癌细胞自动力,促进肿瘤侵袭[22,23]。此外,HIF-1α可促进趋化因子受体(chemokine receptor)CXCR4及间质细胞来源因子-1(stromal-derived factor-1, SDF-1)表达[24,25];而在乳腺癌肺转移中,癌细胞正是通过表达的CXCR4与肺内表达的SDF-1结合而实现在肺内的归巢(homing)[26]。

    7  HIF-1α与肿瘤耐药

    一项关于口咽癌的临床回顾性分析表明:HIF-1α高表达与肿瘤放疗完全缓解率(complete remission, CR)呈显著负相关[27]。而HIF-1α(-)移植肿瘤则对放疗及化疗(顺铂、依托泊苷)的敏感性大大增强[28,29]。放疗可诱导肿瘤细胞HIF-1α活性,增加VEGF及FGF-2释放,从而促进肿瘤血管存活,导致肿瘤对放疗的不敏感[30]。就化疗而言,多药转运蛋白(multidrug transporter)的表达与肿瘤细胞的耐药性关系密切。HIF-1α可通过激活多药耐药蛋白MDR1及BCRP表达从而实现其对肿瘤耐药的调控[31,32]。

    综上,HIF-1α在肿瘤中的广谱高表达及在肿瘤发生发展中的广泛参与使其成为肿瘤靶向治疗的重要靶点之一。目前基于HIF-1α的分子靶向治疗研究多围绕三个层面:(1)阻断HIF-1α上游信号,抑制HIF-1α表达;(2)促进HIF-1α降解,包括HIF-1α mRNA及HIF-1α蛋白;(3)抑制HIF-1α的转录激活功能。肿瘤的发生发展是一个多基因多信号转导途径参与的复杂过程,单纯对其中的一个或几个基因乃至一条或几条信号转导通路的干预效果未见得理想,也因此目前多提倡多种靶向药物的联合使用。但靶向治疗尚有另外一种思路,即以靶向分子的抗体作为载体,将药物运送到肿瘤细胞周围,以求高效力杀死肿瘤细胞。目前我实验室正着力于以HIF-1α人源化抗体作为载体的肿瘤靶向治疗研究。

    【参考文献】

    1  Nishi H, Nakada T, Kyo S, et al. Hypoxia-inducible factor 1 mediate upregulation of telomerase (hTERT). Mol Cell Biol, 2004,24(13):6076-6083.

    2  Yatabe N, Kyo S, Maida Y, et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene, 2004,23(20):3708-3715.

    3  Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature,1998,396(6712):643-649.

    4  Koshiji M, To KK, Hammer S, et al. HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell, 2005,17(6):793-803.

    5  Yang J, Chen Z, Liu Y, et al. Altered DNA polymerase iota expression in breast cancer cells leads to reduction in DNA replication fidelity and a higher rate of muytagenesis  . Cancer Res, 2004,64(16):5597-5607.

    6  Ito A, Koshikawa N, Mochizuki S, et al. Hypoxia-inducible factor-1 mediates the expression of DNA polymerase iota in human tumor cells. Biochem Biophys Res Commun, 2006,351(1):306-311.

    7  Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res, 2003,93(11):1074-1081.

    8  Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev, 2000,14(1):34-44.

    9  Stoeltzing O, McCarty MF, Wey JS, et al. Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst,2004,96(12):946-956.

    10  Tang N, Wang L, Esko J, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 2004,6(5):485-495.

    11  Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis. Nat Rev Cancer, 2004,4(11):891-899.

    12  Iyer NV, Kotch LE, Agani F, et al.Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev, 1998,12(2):149-162.

    13  Robey IF, Lien AD, Welsh SJ, et al.Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia, 2005,7(4):324-330.

    14  Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 112(5):645-657.

    15  Feldser D, Agani F, Iyer NV, et al. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res,1999,59(16):3915-3918.

    16  Fukuda R, Hirota K, Fan F, et al. Insulin like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem, 2002,277(41):38205-38211.

    17  Gunaratnam L, Morley M, Franovic A, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory oathway in VHL(-/-) renal carcinoma cells. J Biol Chem, 2003,278(45):44966-44974.

    18  Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res, 2003,63(5):1138-1143.

    19  McMahon S, Grondin F, McDonald PP, et al. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J Biol Chem, 2005,280(8):6561-6569.

    20  Petrella BL, Lohi J, Brinckerhoff CE. Identification of membrane type-1 matrix metalloproteinase as a target of hypoxia-inducible factor-2 alpha in von Hippel-Lindau renal cell carcinoma. Oncogene, 2005,24(6):1043-1052.

    21  Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von HippelLindau-associated renal cell carcinoma. Mol Cell Biol, 2005,25:5675-5686.

    22  Niizeki H, Kobayashi M, Horiuchi I, et al. Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br J Cancer, 2002,86(12):1914-1919.

    23  Pennacchietti S, Michieli P, Galuzzo M, et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 2003,3(4):347-361.

    24  Schioppa T, Uranchimeg B, Saccani A, et al.Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med, 2003,198(9):1391-1402.

    25  Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 2003,425(6955):307-311.

    26  Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001,410(6824):50-56.

    27  Aebersold DM, Burri P, Beer KT, et al. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res, 2001,61(7):2911-2916.

    28  Unruh A, Ressel A, Mohamed HG, et al. The hypoxia-inducible factor-1α is a negative factor for tumor therapy. Oncogene, 2003,22(21):3213-3220.

    29  Williams KJ, Telfer BA, Xenaki D, et al. Enhanced response to radiotherapy in tumors deficient in the function of hypoxia-inducible factor-1. Radiother Oncol, 2005,75(1):89-98.

    30  Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygen, free radicals, and stress granules. Cancer Cell, 2004,5(5):429-441.

    31  Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res, 2002,62(12):3387-3394.

    32  Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem, 2004,279(23):24218-24225.

    作者单位:100853 北京,解放军总医院肝胆外科研究所 

  (编辑:邓  锋)

作者: 窦春青(综述),周宁新(审校) 2007-4-26
医学百科App—中西医基础知识学习工具
  • 相关内容
  • 近期更新
  • 热文榜
  • 医学百科App—健康测试工具