Literature
首页医源资料库在线期刊中华现代外科学杂志2008年第5卷第5期

树突状细胞与免疫耐受

来源:《中华现代外科学杂志》
摘要:【关键词】骨髓Steinman和Cohn于1973年从小鼠外周淋巴组织中分离出一种新的细胞,同其他单核白细胞一样,这类细胞拥有丰富的线粒体、各种内涵体,核膜外有异染色质。但其细胞表面具有树突样或伪足样突起,因此而得名为树突状细胞(dendriticcell,DC)[1]。在早期的实验中,人们发现脾脏来源的DC刺激同种异体混......

点击显示 收起

【关键词】  骨髓

    Steinman和Cohn于1973年从小鼠外周淋巴组织中分离出一种新的细胞,同其他单核白细胞一样,这类细胞拥有丰富的线粒体、各种内涵体,核膜外有异染色质。但其细胞表面具有树突样或伪足样突起,因此而得名为树突状细胞(dendritic cell,DC)[1]。在早期的实验中,人们发现脾脏来源的DC刺激同种异体混合淋巴细胞反应(mixed lymphocyte reaction,MLR)的能力明显强于淋巴细胞和巨噬细胞[2]。其后的研究表明成熟的DC能够聚集在T淋巴细胞周围,激发自体混合淋巴细胞反应,但其强度弱于前一种MLR。这一特性可以将DC与其他脾脏细胞群区分开[3]。随着这些研究的逐步深入,人们逐渐认识到在获得性免疫中,DC是最重要,功能最强大的抗原递呈细胞(antigen-presenting cell,APC)。其独特的功能在于DC是唯一能活化naiveT淋巴细胞的APC[4]。

    1  DC的来源、分布及分类

  早期的研究表明DC是骨髓来源[5]。其发育中的DC前体自骨髓向血中迁移[6]。DC可分为髓样DC和淋巴样DC。淋巴样DC主要分布于淋巴结、脾脏、黏膜相关组织中的淋巴滤泡生发中心,主要与B淋巴细胞功能有关;髓样细胞主要分布于T细胞富含区,与TC细胞功能有关。按其分布部位可分为:(1)Langhams细胞,主要分布在皮肤黏膜。(2)间质性DC,主要分布于心、肺、肝、肾、甲状腺、胃肠道、膀胱等处。(3)树突状DC,主要分布于脾脏、淋巴结和胸腺等淋巴器官的T细胞富含区。(4)外周血DC和淋巴DC,主要分布于外周血和输入淋巴管。以前人们将这4种DC视为独立的细胞群体,近年研究发现它们不过是一类细胞处于不同分化承受阶段或不同部位而已[7]。DC还可以按其表达的细胞表面标志物细分为不同的种群。在鼠淋巴组织中DC的最明显标志为CD11c[8]。然而由于它们所分布的脏器或者所处的发育阶段不同,它们能够表达淋巴样标志CD4和CD8α,或者髓源性标志CD11b和F4/80,或者在DC群表达相对较少的DEC205和33D1[6,8,9]。位于脾脏髓质边沿带的DC表型为CD4+/-CD8α-CD11b+F4/80+DEC205-/low33D1+,而位于T细胞丰富的脾脏皮质旁区的DC表型往往为CD4-CD8α+CD11b-F4/80-DEC205+33D1-[6,9~11]。CD4-CD8α+CD11b-DEC205+的DC亚群在鼠胸腺细胞中占明显优势,而且在淋巴结中也有分布[9]。另外淋巴结中还有CD4-CD8α-CD11b+DEC205low 亚群和CD4-CD8αlowCD11b+DEC205+亚群,它们被认为是从皮肤迁移过来的DC[9]。以往认为淋巴样DC来源于淋巴样前体细胞,表达淋巴相关标志CD8α[12],而髓样DC来源于髓细胞样前体细胞,缺乏CD8α[13]。但目前看来CD8α+和CD8α-均可来自于相同的髓源或淋巴源前体细胞[14,15]。而且在体内CD8α-DC能向CD8α+转化[6]。另外近来在人体血液中发现一种DC前体细胞,其表型为CD11c+CD11b+B220+MHC-II-,能向CD8α+和CD8α-两个方向转化[6]。以往关于淋巴和髓样DC之间关系的理论已经引起争论并得以纠正[16]。最新的理论认为在稳定或非炎症状态下,鼠外周淋巴组织中存在三种主要类型的不成熟DC:髓样CD11c+CD11b+CD8α-DC,淋巴样CD11c+CD11b-CD8α+DC以及CD11clowB220+前体DC[17]。而在炎症状态下,体内则以单个核细胞来源的DC为主,并且受炎症影响,DC逐步向外周血移向淋巴结发挥抗原递呈作用[18]。

    2  DC的功能及与成熟度的关系

  在免疫稳定状态下,分布于外周非淋巴组织的DC处于不成熟状态,主要功能为抗原识别和摄取。与其功能相适应,细胞表面表达一系列受体便于识别与病原体相关的物质[19],包括Toll-like receptor (TLR)-2,TLR-3,TLR-4,TLR-5,TLR-8和TLR-9[20],能特异性识别原核生物来源的脂蛋白、糖脂、鞭毛素和脂多糖[21]。同时不成熟DC还表达数种C型凝集素,如甘露糖受体、DEC205等,能识别病原体表面的糖类结构[22]。一旦接触到抗原,不成熟DC通过数种途径摄取抗原,包括C凝集素和FcγII/IIIR介导的内吞作用[6,23],以及较强的非特异性吞噬作用。抗原被DC内吞后,必须经过处理后才能与主要组织相容性复合物(major histocompatibility complex,MHC)一起被呈递给淋巴细胞。抗原的处理主要在DC的内涵体内进行,其环境为弱酸性,含有大量的溶酶体、组织蛋白酶B、D、E、H、L、S,用以降解抗原,并有大量MHC-Ⅱ类分子表达[24~27]。但在形成抗原肽-MHC分子复合物之前,DC必须经历一次成熟的过程。成熟DC的一个特性是能够从外周组织沿传入淋巴管迁移至邻近的次级淋巴组织[28]。这一点在LC细胞中研究较多。成熟过程中,LC细胞下调黏附分子、E-钙黏蛋白[29]、趋化因子(chemokine receptor,CCR)-6[30],同时上调CD44等骨桥蛋白受体[31]、CCR7[32],从而获得迁移能力。成熟DC的另一特性是能够调控MHC-抗原肽复合物的合成,并与共刺激分子一起表达于细胞表面。随着DC的完全成熟,抗原以MHC-抗原肽复合物形式被递呈给过路T细胞。MHC分子在成熟DC表面的表达率明显高于B细胞和单个核细胞[33]。而且成熟DC表面高表达共刺激分子CD40、CD80/86[34],CD2,CD11a,CD54,CD58等黏附分子及一种趋化因子DC-CK1,后者能高效率吸引naiveT细胞(CD45RA+)[35]。这些特性使得成熟DC能够吸引并簇集naiveT细胞[36],并通过共刺激分子最终激活抗原特异性T细胞。关于何种DC具有致耐受性,经典的看法是不成熟髓样DC由于低水平表达MHC及共刺激分子,可以诱导T细胞耐受。而成熟髓样DC高表达这些分子,则诱导T细胞免疫。这一看法受到实验性移植的广泛支持,供、受者来源的不成熟DC均可促进耐受的诱导。有研究表明,术前7天的供者源的不成熟DC单次注射延长了小鼠异体心脏移植后的存活时间[37],而且通过共刺激阻断的方式可以显著增强这一作用[38]。通过选择性活化的DC,或调节性DC,同样因为具有极低的共刺激作用,能防止小鼠发生致死性急性移植物抗宿主反应[39]。在移植术7天前给予调节性DC,同样可以明显延长异体皮肤的存活[40]。最令人惊奇的是供者源不成熟DC结合免疫抑制剂结合,使异基因心脏移植的存活时间超过100天[41]。然而近年来,部分成熟DC也具有致耐效应[42]。此外,用人自体来源的成熟DC与T细胞可以诱导生成CD4+调节T细胞,该细胞能显著抑制同种混合淋巴细胞反应[43]。这些证据说明无论DC成熟与否,可能都具有致耐作用。如果从DC亚型来讨论DC的致耐性情况将更加复杂。除髓样细胞外,淋巴样细胞的致耐作用正日益受到重视。它们在对病毒的反应中能够分泌大量α干扰素[44],在针对无害抗原的炎症反应中发挥重要的保护作用[45]。有学者发现,淋巴样DC前体在同种异体的造血干细胞及皮肤移植的致耐作用中是发挥作用的主要细胞[46]。而且在没有使用免疫抑制药物的情况下,提前7天输入的供者源淋巴样DC前体能使异体心脏移植存活从9天延长至22天[47]。因此不论髓样DC还是淋巴样DC都具有诱导耐受的作用,成熟与否不再是诱导免疫还是诱导耐受的细胞功能的划分标准。事实上细胞成熟是一个连续的过程,并不是只有不成熟和成熟两种状态,其中“半成熟”状态,即具有成熟的表型,但由于不能生成足够的致炎细胞因子,因此与免疫耐受功能具有密切的关系。

    3  耐受性DC的功能及与调节性T细胞(regulatory T cell,Treg细胞)的关系

  Treg细胞是一类具有免疫抑制功能,专职对针对病原体和自身抗原的免疫应答进行调控的一个T细胞亚群。其本身按表型的不同可分为CD4+、CD8+、CD4-CD8-等细胞亚群,与自身耐受、移植耐受及肿瘤的逃逸有着密切的关系[48]。许多研究表明DC可以诱导Treg细胞的形成。负载抗原的成熟DC可以诱导小鼠CD4+CD25+Treg细胞扩增[49]。而人成熟的淋巴样DC可以诱导naiveCD8+T细胞生成Treg细胞[50]。同样在体内实验中,供者源不成熟DC可以诱导形成抗原特异性Treg细胞,延长小鼠异体心脏移植后存活时间[51]。Treg细胞又通过下调DC表面的MHC分子和共刺激分子,从而经细胞接触方式抑制DC的抗原递呈功能;而与Treg细胞接触的DC不仅不能再刺激T细胞增殖,反而可诱导生成更多的Treg细胞[52]。不成熟DC和Treg细胞之间的正反馈调节作用提示,随着对于这些免疫系统内重要的调控细胞的研究逐步深入,它们有可能成为最有效的途径从而实现移植物的永久存活。体内和体外的实验证明确保不成熟DC的致耐受特性是实现其在器官移植方面的治疗潜能的关键。

    4  通过DC摄取的抗原诱导

  耐受DC不同于其他APC的独特的双信号抗原递呈作用为研究DC诱导供者特异性免疫耐受提供了新的思路。一种办法是利用凋亡细胞,在体内或体外传递给DC。可以采用光敏作用或紫外线诱导供者细胞凋亡。实验显示用光敏作用诱导的异体凋亡细胞注入小鼠后,可以诱导生成抗原特异性CD4+CD25+Treg细胞,该细胞具有防止超敏反应的效能[53]。目前更新的方法是使用体外的光分离置换法预先照射患者的粒细胞,从而提高移植的耐受性[54]。潜在的风险是对循环中粒细胞的照射可能活化APC,从而导致免疫排斥而不是免疫耐受。另外,将受者的不成熟DC用NF-κB寡聚脱氧核苷酸伪装物(抑制DC成熟[55])和中波紫外线照射过的供者凋亡脾细胞预处理后,通过供者特异性抑制显著延长异体心脏移植后存活时间[56]。另一个与此有关的方法是向移植受体提供DC生成的外核体。外核体来自DC的内涵体,在DC表面的MHC分子和共刺激分子中含量丰富,其作用是易化抗原向T细胞的递呈[57]。通过预先提供供者骨髓源DC的外核体给受体,鼠异体心脏移植后存活时间得以延长[58],显示了这种方法的有效性。

    5  问题与展望

 利用DC与异基因器官的联合移植能够成功诱导供者特异性免疫耐受,并显著延长了移植物的存活时间,显示了DC在异基因器官移植中广阔的临床应用前景。但目前的研究大部分是建立在动物模型上,笔者面临的问题是如何确定DC用于人体实验的安全性和有效性,以及DC应用人体所需的临床条件,此外DC应用的剂量、时机以及维持耐受状态所需的重复注射次数,怎样保证DC处于最佳的致耐状态。这一切都是DC应用于临床之前急需解决的问题。相信随着研究的深入,人们对DC在诱导异基因器官移植耐受中的作用机制会越来越清楚,在不久的将来它将会成为移植物永久成活的决定性因素。

 

【参考文献】
  1 Steinman RM,Cohn ZA.Identification of a novel cell type in peripheral lymohoid organs of mice.Morphology,quantitation,tissue dietribution.J Exp Med,1973,137(5):142-162.

2 Steinman RM,Witmer MD.Lymphoid dendritic cellsare potent stimulators of the primary mixed leukocytereaction in mice.Proc Natl Acad Sci USA,1978,75:5132-5136.

3 Nussenzweig MC,Steinman RM.Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction.J Exp Med,1980,151:1196-1212.

4 Lebecque S,Liu YJ,Pulendran B,et al.Immunobiology of dendritic cells.Annu Rev Immunol,2000,18:767-811.

5 Steinman RM,Lustig DS,Cohn ZA.Identification of a novel cell type in peripheral lymphoid organs of mice.3.Functional properties in vivo.J Exp Med,1974,139:1431-1445.

6 Del Hoyo GM,Martin P,Vargas HH,et al.Ardavin C.Characterization of a common precursor population for dendritic cells.Nature,2002,415:1043-1047.

7 Lin CL,Suri DH.Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation.Eur J Immunol,1998,28(12):4114-4122.

8 Steinman RM.The dendritic cell system and its role in immunogenicity.Annu Rev Immunol,1991,9:271-296.

9 Shortman K,Liu YJ.Mouse and human dendritic cell subtypes.Nat Rev Immunol,2002,2:151-161.

10 Agger R,Crowley MT,Witmer-Pack MD.The surface of dendritic cells in the mouse as studied with monoclonal antibodies.Int Rev Immunol,1990,6:89-101.

11 Witmer MD,Steinman RM.The anatomy of peripheral lymphoid organs with emphasis on accessory cells:lightmicroscopic immunocytochemical studies of mouse spleen,lymph node,and Peyers patch.Am J Anat,1984,170:465-481.

12 Saunders D,Lucas K,Ismaili J,et al.Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor.J Exp Med,1996,184:2185-2196.

13 Inaba K,Inaba M,Deguchi M,et al.Granulocytes,macrophages,and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow.Proc Natl Acad Sci USA,1993,90:3038-3042.

14 Traver D,Akashi K,Manz M,et al.Development of CD8α-positive dendritic cells from a common myeloid progenitor.Science,2000,290:2152-2154.

15 Manz MG,Traver D,Miyamoto T,et al.Dendritic cell potentials of early lymphoid and myeloid progenitors.Blood,2001,97:3333-3341.

16 Naik S,Vremec D,Wu L,et al.CD8α+ mouse spleen dendritic cells do not originate fromthe CD8α-dendritic cell subset.Blood,2003,102:601-604.

17 OKeeffe M,Hochrein H,Vremec D,et al.Effects of administration of progenipoietin 1,Flt-3 ligand,granulocyte colony-stimulating factor,and pegylated granulocyte-macrophage colonystimulating factor on dendritic cell subsets in mice.Blood,2002,99:2122-2130.

18 Randolph GJ,Beaulieu S,Lebecque S,et al.Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking.Science,1998,282:480-483.

19 Banchereau J,Briere F,Caux C,et al.Immunobiology of dendritic cells.Annu Rev Immunol,2000,18:767-811.

20 Colonna M,Krug A,Cella M.Interferon-producing cells:on the front line in immune responses against pathogens.Curr Opin Immunol,2002,14:373-379.

21 Akira S,Takeda K,Kaisho T.Toll-like receptors:critical proteins linking innate and acquired immunity.Nat Immunol,2001,2:675-680.

22 Figdor CG,Van Kooyk Y,Adema GJ.C-type lectin receptors on dendritic cells and Langerhans cells.Nat Rev Immunol,2002,2:77-84.

23 Sallusto F,Cella M,Danieli C,et al.Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment:downregulationby cytokines and bacterial products.J Exp Med,1995,182:389-400.

24 Pieters J,Bakke O,Dobberstein B.The MHC class II-associated invariant chain contains two endosomal targeting signals within its cytoplasmic tail.J Cell Sci,1993,106:831-846.

25 Blum JS,Cresswell P.Role for intracellular proteases in the processing and transport of class II HLA antigens.Proc Natl Acad Sci USA,1988,85:3975-3979.

26 Blum JS,Fiani ML,Stahl PD.Localization of cathepsin D in endosomes:characterization and biological importance.Adv Exp Med Biol,1991,306:281-287.

27 Mizuochi T,Yee ST,Kasai M,et al.Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as well as for degradation of class II MHC invariant chain.Immunol Lett,1994,43:189-193.

28 Cumberbatch M,Kimber I.Tumour necrosis factor-α is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology,1995,84:31-35.

29 Schwarzenberger K,Udey MC.Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ.J Invest Dermatol,1996,106:553-558.

30 Dieu MC,Vanbervliet B,Vicari A,et al.Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites.J Exp Med,1998,188:373-386.

31 Weiss JM,Renkl AC,Maier CS,et al.Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes.J Exp Med,2001,194:1219-1229.

32 Flores-Romo L.In vivo maturation and migration of dendritic cells.Immunology,2001,102:255-262.

33 Inaba K,Pack M,Inaba M,et al.High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes.J Exp Med,1997,186:665-672.

34 Anchereau J,Steinman RM.Dendritic cells and the control of immunity.Nature,1998,392:245-252.

35 Adema GJ,Hartgers F,Verstraten R,et al.A dendritec-cell-derived C-C chemokine that preferentially attracts naive T cells.Nature,1997,387:713-717.

36 Ingulli E,Mondino A,Khoruts A,et al.In vivo detection of dendritic cell antigen presentation to CD4(+) T cells.J Exp Med,1997,185:2133-2141.

37 Fu F,Li Y,Qian S,et al.Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+,CD80dim,CD86-) prolong cardiac allograft survival in nonimmunosuppressed recipients.Transplantation,1996,62: 659-665.

38 Lu L,Li W,Fu F,et al.Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival.Transplantation,1997,64:1808-1815.

39 Sato K,Yamashita N,Baba M,et al.Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse.Immunity,2003,18:367-379.

40 Roelen DL,Schuurhuis DH,Van den Boogaardt DE,et al.Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells.Transplantation,2003,76:1608-1615.

41 Beriou G,Peche H,Guillonneau C,et al.Donorspecific allograft tolerance by administration of recipient-derived immature dendritic cells and suboptimal immunosuppression.Transplantation,2005,79:969-972.

42 Albert ML,Jegathesan M,Darnell RB.Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells.Nat Immunol,2001,2:1010-1017.

43 Verhasselt V,Vosters O,Beuneu C,et al.Induction of FOXP3-expressing regulatory CD4pos T cells by human mature autologous dendritic cells.Eur J Immunol,2004,34:762-772.

44 Colonna M,Trinchieri G,Liu YJ.Plasmacytoid dendritic cells in immunity.Nat Immunol,2004,5:1219-1226.

45 de Heer HJ,Hammad H,Soullie T,et al.Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen.J Exp Med,2004,200:89-98.

46 Fugier-Vivier IJ,Rezzoug F,Huang Y,et al.Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment.J Exp Med,2005,201:373-383.

47 Abe M,Wang Z,de Creus A,et al.Plasmacytoid dendritic cell precursors induce allogeneic T-cell hyporesponsiveness and prolong heart graft survival.Am J Transplant,2005,5:1808-1819.

48 Cassis L,Aiello S.Natural versus adaptive regulatory T cell.Contrib Nephrol,2005,146:121-131.

49 Tarbell KV,Yamazaki S,Olson K,et al.CD25+CD4+ T cells,expanded with dendritic cells presenting a single autoantigenic peptide,suppress autoimmune diabetes.J Exp Med,2004,199:1467-1477.

50 Gilliet M,Liu YJ.Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells.J Exp Med,2002,195:695-704.

51 Taner T,Hackstein H,Wang Z,et al.Rapamycin-treated,alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival.Am J Transplant,2005,5:228-236.

52 Morelli AE,Hackstein H,Thomson AE.Potential of tolerogenic dendritic cells for transplantation.Semin Immunol,2001,13(5):323-335.

53 Maeda A,Schwarz A,Kernebeck K,et al.Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigenspecific regulatory T cells.J Immunol,2005,174:5968-5976.

54 Aubin F,Mousson C.Ultraviolet light-induced regulatory (suppressor) T cells:an approach for promoting induction of operational allograft tolerance? Transplantation,2004,77(1 Suppl):S29-S31.

55 Bonham CA,Peng L,Liang X,et al.Marked prolongation of cardiac allograft survival by dendritic cells genetically engineered with NFkappa B oligodeoxyribonucleotide decoys and adenoviral vectors encoding CTLA4-Ig.J Immunol,2002,169:3382-3391.

56 Xu DL,Liu Y,Tan JM,et al.Marked prolongation of murine cardiac allograft survival using recipient immature dendritic cells loaded with donor-derived apoptotic cells.Scand J Immunol,2004,59:536-544.

57 Morelli AE,Larregina AT,Shufesky WJ,et al.Endocytosis,intracellular sorting,and processing of exosomes by dendritic cells.Blood,2004,104:3257-3266.

58 Peche H,Heslan M,Usal C,et al.Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection.Transplantation,2003,76:1503-1510.


作者单位:614100 四川夹江,解放军第42医院外二科(△骨伤科)

作者: 王逸涛
医学百科App—中西医基础知识学习工具
  • 相关内容
  • 近期更新
  • 热文榜
  • 医学百科App—健康测试工具