Literature
首页行业资讯临床快报神经科

盘点:2014诺贝尔生理学及医学奖暨大脑GPS定位系统研究进展汇总

来源:www.cpia.org.cn
摘要:2014年诺贝尔生理学或医学奖6日揭晓,拥有美国和英国国籍的科学家约翰-奥基夫以及两位挪威科学家梅-布里特-莫泽和爱德华-莫泽,以表彰他们发现大脑定位系统细胞的研究。JohnO′Keefe和空间位置JohnO′Keefe曾着迷于研究大脑如何控制行为的问题。他尝试通过仪器捕捉在某个房间里自由移动的大鼠其大脑海马体中的个别神经......

点击显示 收起

2014年诺贝尔生理学或医学奖6日揭晓,拥有美国和英国国籍的科学家约翰-奥基夫以及两位挪威科学家梅-布里特-莫泽和爱德华-莫泽,以表彰他们发现大脑定位系统细胞的研究。

John O′Keefe和空间位置

John O′Keefe曾着迷于研究大脑如何控制行为的问题。在上个世纪60年代后期,他决定用神经生理学方法来解决这个问题。他尝试通过仪器捕捉在某个房间里自由移动的大鼠其大脑海马体中的个别神经细胞发出的信号,他注意到当大鼠处在某一特殊位置时,有一种神经细胞会变得活跃。他通过实验发现这种“位置细胞”并不只是从视觉上记住,而且会构造出一幅所处环境的内在地图。O′Keefe得出结论认为:在处于不同环境中被激活的这些位置细胞的共同作用下,海马体可以构造出很多地图。因此,大脑对环境的记忆通过位置细胞活动的特定组合的方式储存在海马体中。

如很多诺贝尔奖得主一样,奥基夫在1970年代提出有关“位置细胞”的理论时,遭到学界不少人冷嘲热讽,但现在终于获得肯定。奥基夫在伦敦向记者表示,对获奖感到惊讶和难以置信,又形容自己年少时兴趣多变,中学时钻研古典学,到大学却入读航空学科,之后又改修哲学和心理学。

牛津大学生理学名誉退休教授斯坦为奥基夫获奖感到高兴,认为是实至名归。“记得约翰最初描绘‘位置细胞’时,遭到多么冷漠的嘲笑。当时学界典型反应是‘注定是人为现象’和‘他显然低估老鼠的嗅觉’。现在人们都认为他的发现已像常识般,是明显不过的事。”

May-Britt和Edvard Moser发现了协调机制

May-Britt和Edvard Moser在绘制大鼠脑海马区的连接时,在邻近的内嗅皮层区域发现了惊人的活动模式。在这个区域,当大鼠穿过六边形网格里的多个地点时,特定的细胞被激活(图2)。每个这样的细胞被特定的空间模式激活,这样的“网格细胞”构成了一个协调系统,促发空间运动。加上内嗅皮层区域其他能够识别头部方向和房间边界的细胞一起,它们在海马区形成了回路。这一回路在大脑中构成了一个广泛的定位系统,一个内部的GPS。

本文中,小编整理了近年来关于大脑GPS系统(定位系统)及大脑网格细胞的一些研究进展,希望大家通过学习更加深入了解诺奖获得者的研究领域及成果。

【1】Neuron:大脑靠视觉和身体两幅“地图”定位

据物理学家组织网12月5日报道,美国加利福尼亚大学圣芭芭拉分校(UCSB)研究人员利用核磁共振成像(MRI)技术研究了18个人的大脑,绘制了400个不同的手臂动作到达目标时的MRI图像。他们发现,大脑在计划动作时,有两种明显不同的定位类型:视觉地图和身体地图。研究发表在《神经》杂志上。

比如芭蕾舞演员在双人舞中抓住同伴的手或在黑夜里抚摸受伤的小腿时,要想让手臂到达正确的位置,其大脑要使用不同的“地图”来定位。最新研究表明,抓住对方的手,要依靠空间视觉地图,而抚摸小腿,则依靠头脑中的身体地图。

之前的观点认为,所有的定位运动,包括导向视觉目标的或导向自身的,都是用视觉地图来计划。论文第一作者皮埃尔-迈克尔·波尼说:“我们发现,如果目标是视觉的,后顶叶皮层就会被激活,用视觉地图来编码运动;而在黑暗中完成一个动作,目标是非视觉的,就会由同样的大脑区域使用完全不同的身体地图来计划这一动作。”

【2】Nature:发现大脑“GPS”系统工作原理

就好比全球定位系统(GPS)可以帮助我们定位我们深处何处一样,大脑也存在一种内在的系统来帮助确定我们机体所处的位置及周围环境,近日,一项刊登在杂志Nature上的研究报告中,来自普林斯顿大学的研究者揭示,一种名为网格细胞的位置追踪神经元可以通过集体协作来对机体进行定位。

网格细胞是一种具有电活性的神经元,其就好比是一个动物在大自然中随意旅行一样,其在2000年代中期被发现,当机体移动到特殊位置时,每一个细胞就会被激发。更让人觉得神奇的是,这些网格细胞的位置都是以一种六角形模式被安排的,就类似于跳棋盘一样。研究者David Tank说,网格细胞可以形成某种空间表征,我们的研究主要关注于形成这种六角形模式的神经系统工作的分子机制。

此前研究中,研究者让小鼠从电脑模拟产生的一种虚拟环境中穿过,隋鸥测定小鼠大脑单个网格细胞内部的电信号。当小鼠看到虚拟系统中的视频游戏时,其就会移动到有小鼠尺寸大小的踏板上。

【3】Science:鸽子脑中具有GPS定位功能 神经元磁场编码

鸽子可以从几百公里之外,甚至在一、二千公里远的地方,仍能飞回家去,其奥秘何在呢?它的答案是鸽子脑部神经元为地球磁场编码,让鸽子拥有可靠的内置GPS,鸽子脑部的这个定位系统,让它们可以感知地球磁场的变化,并在长途距离中辨别方向。

科学家早就知道,许多动物(从鸟类到狐狸甚至可能包括人类)身上存在着磁场接收器。在以前的长期研究中,专家们一直对鸽子认路的本领争论不休,一方认为鸽子是靠其体内的磁性物质来辨认方向,就像人使用微型指南针一样;另一方则认为,鸽子将空气中的不同气味作为指示牌来辨认回家的路线,当然,视觉信号的作用也不能排除;还有一种理论认为,鸽子是靠太阳的位置来识别方向的。这些以前的研究基本上确定了磁场接收器存在于鸟类喙部和脊椎动物其他部位的事实。

【4】深度解读:2014诺贝尔生理学或医学奖

飞鸽传书,老马识途。当还处在原始时代的时候,人类就已经意识到,很多动物都具有出类拔萃的导向能力,纵使万水千山,无论阴晴雨雪,这些神奇的动物总能知道路在何方。人类当中也不乏这样的认路高手,他们的脑海中似乎嵌入了一张高分辨率地图,怎样都不会迷失方向。作为一个出门不带GPS简直不能活的路痴,我总是非常羡慕这样的人和动物,难不成他们的大脑当中还内置了一个活体GPS?刚刚揭晓的2014年诺贝尔生理学或医学奖,恰恰向我们解答了这个问题。

如何才能不迷路呢?首先,我们必须知道自己要去的是个怎样的地方。譬如说,我要去北京故宫,我首先得知道那是一个有着红色宫墙和金色琉璃瓦的巨大宫殿。抽象一些说,我们要通过一系列特征来确定某一个位置。在我们的大脑中,正存在着这样一种专门负责记住位置特征的神经元。本届诺贝尔生理及医学奖其中一位得主,伦敦大学学院(University College London)的约翰?奥基夫(John O’Keefe),早在1971年就和同事在大鼠大脑中一个叫做海马(hippocampus)的脑区里就发现了这样一种神经元,他们将其命名为“位置细胞”(place cell)

【5】科学家首次发现人类认路细胞 系网格细胞网络

我们都有迷路的经验。幸运的是,动物大脑中帮助认路的特殊细胞如今首次在人类身上得以发现。这个发现或许可让认路有困难的人得到更好治疗。

我们知道,动物使用3种类型的细胞来认路。动物面临一个特定方向时,方向细胞会得到激发。动物处于一个特定地点时,它的位置细胞会激发。而随着它四处活动,网格细胞会定期激发。

科学家已经在人类身上发现了方向和位置细胞,但是网格细胞的存在迹象只是在一些大脑扫描过程中才显露出来。

为了探寻人类大脑中是否确实存在这些细胞,美国德雷克塞尔大学的约书亚·雅各布斯和同事对14名志愿者进行了测试。这些志愿者都为治疗癫痫而在大脑中植入了电极。

研究人员让志愿者玩一个电脑游戏,从而记录他们大脑中一系列单细胞的活动情况。在该电脑游戏中,志愿者驾车行驶在开阔空间中,他们要搜寻一些物体,并记住他们找到物体的地点。然后,他们必须尽快再次确定这些物体的位置,不过这次,除非志愿者到达正确的目的地,否则他们就无法看到这些物体。

【6】Nat Neurosci:人脑中也存在网格细胞

据《自然—神经科学》上的一项研究称,在探寻虚拟环境时,人脑会呈现网格状活动。这表明,我们身体内的导航系统即便在身体未发生物理空间意义上的移动时仍是活跃的。

先前研究认为,动物对空间的感知源于被称为空间细胞和网格细胞的两类神经细胞的作用,当动物进入到环境中的特定区域时,空间细胞便会活跃起来,而网格细胞负责展示这种细胞活动的空间模式,类似于地图上的网格。虽然空间细胞已被发现存在于人脑中,但网格细胞之前只在啮齿动物、蝙蝠和猴子中被发现。

Joshua Jacobs等人报告了人脑中的网格状活动,为网格细胞的存在提供最直接的证据,这也表明人类的导航协作系统同其他哺乳动物的类似。

研究人员将电极通过颅内移植入正在接受治疗的抗药性癫痫患者的脑中,并记录下神经细胞的活动情况。他们让患者用操纵杆找到电脑虚拟环境中的物体,然后通过记录找寻患者大脑内的网格状结构。

【7】Nature:神经细胞以三角形网格方式记忆

通常地图都使用互成直角的经线和纬线来帮助定位,而英国一项最新研究显示,人类大脑中的“导航系统”使用的却是由正三角形组成的网格。

英国伦敦大学学院的研究人员在《自然》杂志上报告说,他们首次确认人类大脑中存在这种利用正三角形网格来帮助定位的“网格细胞”。过去曾有研究发现实验鼠大脑中存在这种细胞。

研究人员因此设计了一套虚拟现实系统,请受试者戴上专用设备,“游览”虚拟的山谷草地等景色,同时利用功能磁共振成像技术测量受试者大脑相应区域的活动情况。结果发现,人类大脑中相应细胞的活动同样呈现出明显的正三角形网格模式,并且受试者的空间记忆能力越强,这种模式就越明显。

参与研究的卡斯韦尔·巴里说,这些网格细胞为大脑提供了空间认知地图,它们使用了与通常地图中经线和纬线非常相似的方式,所不同的是采用了三角形网格而不是方形网格。

网格细胞是大脑中最容易遭受早老性痴呆症等疾病影响的细胞之一,这也可以帮助解释为什么这些疾病的常见症状就是记不住路。

【8】比天空更广阔:揭秘大脑如何复杂工作

【9】大脑重编程后真的可以高效工作

来自西澳大学的研究人员通过研究揭示,电磁刺激或可改变大脑的组织结构,使得大脑更加有效地“工作”,相关研究成果刊登于国际杂志the Journal of Neuroscience上。

研究者表示,对小鼠进行较弱的连续电磁脉冲,即重复经颅磁刺激(Repetitive Transcranial Magnetic Stimulation,rTMS)可以将小鼠大脑中的异常神经连接替换为正常的连接,使其大脑可以更加高效的运行,这项研究对于治疗一系列的神经系统障碍比如抑郁症、癫痫症和耳鸣等。

为了更好地揭示电磁刺激对大脑的作用机制,研究人员对出生后大脑结构异常的小鼠进行了低强度的rTMS刺激检测,研究人员Kalina Makowiecki表示,甚至在低强度下,脉冲电磁刺激也可以减少大脑的异常神经连接,并且将其替换成大脑中正常的定位连接。

【10】思考的大脑中第一批神经元细胞被成功鉴别出

美国耶鲁医学院和牛津大学的研究人员们最近成功鉴别出大脑皮层中最初形成的第一批神经元细胞。正是有了大脑皮层的活动,人的活动才富有人性化。

研究论文发表于最近一期《自然神经科学》期刊杂志上。研究结果表明,大脑中的第一批神经元细胞,研究人员们把它们叫做“老前辈”,在授精完成31日后就已经形成了。这一过程比以前的研究预想都要早得多,形成这一神经元后相当长时间后,胚胎才开始发育,长出手、腿或眼睛等组织。

研究人员们在他们的论文中写到,“这些神经元细胞的概念在这里是首次提出来的,它们的形成要比其他可知的促进大脑皮层发育的细胞都要早。这些早熟的‘老前辈们’在大脑皮层的发育成型进程中一直起着举足轻重的作用。”

众所周知,大脑皮层主要负责人的认知性行为,在感知、记忆、思考、语言、精神能力、智商和意识方面都起着至关重要的作用。它由200亿个神经元细胞构成,占整个大脑重量的40%之多。

【11】JCB:发现可加速癌症及神经性障碍疾病治疗的细胞导航系统

刊登在国际杂志Journal of Cell Biology上的一篇研究论文中,来自杜克大学的研究人员通过研究发现,细胞表面的一种“巡回检测系统”或许会为开发治疗诸多疾病,比如癌症、帕金森疾病、肌萎缩侧索硬化(ALS)的新型疗法带来帮助。

文章中,研究人员以线虫作为模式动物进行研究,线虫的细胞可以突破正常组织的边界进入到其他组织和器官中,这种反应对于其进行许多正常的发育过程十分重要,对于其胚胎发育、伤口愈合乃至新血管的形成都很关键;但是有时候该过程也会出错,比如癌转移,即癌细胞可以扩散到全身其他组织中去。

David Sherwood教授说道,细胞的侵袭是癌症研究临床中研究最为相关,但却知之甚少的一个过程,我们一直致力于研究秀丽隐杆线虫在正常发育和癌症发生期间关于细胞侵袭控制的分子机制。在线虫发育过程中,一种名为锚状细胞的特殊细胞会从线虫的子宫分离出来,但其需要特殊的信号来指导其从什么位置分离出来,早在2009年的研究中,研究人员就揭示了一种名为神经生长因子导向的锚状细胞一边其可以在准确的方向发生侵袭。

【12】诺贝尔奖:中国差距相当大 老是差一步

“这简直不太可能,我从未预料到,这是一项崇高的荣誉。”10月6日,2014年诺贝尔生理学或医学奖获得者之一约翰·奥基夫在接受记者采访时仍然非常激动。当得知获奖时,他正在家里的办公桌前像以往一样工作。

瑞典卡罗琳医学院6日在斯德哥尔摩宣布,将2014年诺贝尔生理学或医学奖授予拥有美英双国籍的科学家约翰·奥基夫以及两位挪威科学家梅-布里特·莫泽和爱德华·莫泽,以表彰他们发现大脑定位系统细胞的研究。

诺贝尔奖评选委员会在声明中说,今年获奖者的研究成果解决了困扰科学界几个世纪的难题,发现了大脑的定位系统,即“内部的GPS”,从而使人类能够在空间中定位自我,有助于进一步了解人类大脑空间记忆的中枢机制。

布里特在采访中表示,在接到瑞典诺贝尔生理学或医学奖委员会秘书长电话得知喜讯后,她喜极而泣。让她感到有些沮丧的是,丈夫爱德华当时正在飞机上,不能在第一时间与他分享这个消息。

“12:30飞机落地后,我走出机舱,有一个机场代表捧着鲜花接我坐车,当时我还一头雾水。”爱德华说,看到朋友们发来的150封邮件和75条短信后,他才知道自己获得诺奖。

今年诺贝尔生理学或医学奖奖金共800万瑞典克朗(约合111万美元),奥基夫将获得奖金的一半,而莫泽夫妇将共享奖金的另一半。

【13】改写记忆有望成现实

香港《文汇报》报道,若与情绪有关的记忆可以改写,相信不少人会选择抹去不愉快的回忆。日本及美国科学家最近成功研究改写记忆的方法,有助开发出治疗压力症候群(PTSD)及抑郁等心理疾病的新方法。

美国麻省理工学院(MIT)及日本理化学研究所(RIKEN)以“记忆整合”研究为蓝本,脑内的物理现象常变,因此可被更改。例如不愉快回忆形成后,相关情绪可删除。

此前研究得知大脑内负责记忆及空间定位的是海马体,而负责情绪反应的是杏仁核。

研究人员利用光遗传学技术,在实验中分别对两组老鼠,在它们脑内涂上对光线有反应的物质。其中一组老鼠会被电击,制造恐惧记忆;另一组则安排与异性互动,制造正面记忆。研究员用光照激活它们的记忆,在老鼠回忆时,让它们经历相反体验。

【14】Nat Neurosci:揭示神经回路的动力学机制或可助力研究阿尔兹海默氏症的靶向疗法

一项发表在国际杂志Nature Neuroscience上的研究论文中,来自麦基尔大学等处的科学家通过研究揭示了控制大脑记忆的神经回路及动态学机制,该机制同时也是海马体发挥重要作用的基本元件。

早在2009年研究者们就开发了一种特殊的方法,即海马体形成的体外制备法;如今研究者们在小鼠机体内也成功实现了上述海马体的制备方法,海马体中和记忆相关的活性流并不是单向的。记忆可以形成我们的核心身份,尽管如此,记忆的产生及提取也是我们无法理解的一种现象,研究者们围绕学习和记忆相关的神经回路已经开展了大量的研究,因为人们会因此而患各种疾病,比如阿尔兹海默氏症等。

近些年来,研究者Williams及其同事才开始着手重点研究大脑神经回路的动态学机制,研究者表示,记忆编码和提取的过程需要海马体中成千上万个神经元的活化,尽管如此,研究者们对于该过程所涉及的神经回路依然知之甚少。

揭示海马体中神经元的行为或许可以帮助科学家们能够深入理解和阿尔兹海默氏症等神经变性疾病相关疾病中神经回路的异常表现机制,只有鉴别出海马体中的相关神经元回路或许才可以帮助理解记忆的效应机制,而对这些神经回路复杂动力学的理解也将帮助研究人员揭示阿尔兹海默氏症患者大脑的早期改变,为开发新型的靶向疗法将提供更多的研究思路。

【15】Nat Neurosci:科学家揭示个体记忆力形成的神经元网络调控机制

个体学习和记忆能力的产生被认为是由于大脑中海马体神经元突触连接性的增强所致,海马体包括5个亚区,在其中四个亚区之间形成的回路被认为是个体记忆形成的关键;近日,刊登在国际著名杂志Nature Neuroscience上的一篇研究论文中,来自日本理化研究所的研究人员在大脑海马体的第5个亚区中鉴别出了一种新型回路。

100多年来,研究人员一直致力于研究人类大脑的主要回路,即由齿状回到亚区CA3和CA1组成的内嗅皮层,亚区CA2位于CA3和CA1之间,其细胞相对“粗糙”一些(不够精细),这项研究中,研究人员结合构造学、遗传学和生理学技术对位于亚区CA2中神经元形成的连接进行分析,首先研究人员利用荧光标记物来标记神经纤维,通过检测基因RGS14、PCP4 和STEP的表达情况鉴别出了CA2亚区,结果显示,相比预期而言,CA2区域神经元可以接收齿状回区域细胞的大量的信息输入。

随后研究人员对小鼠模型进行实验,利用激光来刺激其纤维并且记录其它几个亚区的活性情况,结果显示,CA2和CA3区域的神经元的刺激激活作用可以快速发生,而CA1区域就相对迟缓一些。研究者表示,CA2亚区的神经元可以将纤维发送至CA1亚区,形成一种可以交替回落。

【16】Neuron:发现导致海马体神经细胞异常的基因

科学家现在可以对一种导致严重精神衰弱疾病的基因有了更深入的了解。破坏DISC1基因(disrupted-in-schizophrenia 1)对海马体(hippocampus)中神经元的发育和迁移有重要影响,海马体是大脑中负责学习和记忆的区域,海马体异常或可能导致精神分裂症。

在第一份研究报告中,Enomoto等人发现DISC1可与肌动蛋白结合蛋白Girdin共同调节神经元轴突的形成。之前有研究表明Girdin是AKT的底物,与正常细胞结构的形成相关。对新生小鼠齿状回(dentate  gyrus)缺失Girdin蛋白的细胞的研究表明,小鼠神经细胞不能形成轴突。而且,如果抑制DISC1/Girdin之间的相互作用将导致神经细胞在发育过程中出现异常迁移和错误定位。

在另一份研究中,约翰霍普金斯大学的Guo-li  Ming等人发现,在成年人海马体新形成的神经元中抑制DISC1基因表达,将导致AKT过度活跃,而AKT基因是一种与精神分裂症相关的基因。进一步研究表明,抑制DISC1基因或基因改良AKT信号所导致的神经细胞发育异常,可以通过哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)进行改善。

【17】Current Biology:人类大脑海马体中藏地图

心灵感应?或许吧。通过分析受试者使用的神经细胞,研究人员如今成功确定出人们在虚拟环境中的“站立”位置。这一发现将有助于科学家更好地理解记忆如何在包括阿尔茨海默氏症在内的神经性疾病中出错。

研究人员已经在阐释大鼠的意识方面取得了进展。通过记录名为位置细胞的神经元的激活模式,科学家已经能够确定一只大鼠在实验室迷宫中的位置。但是此类研究只能够记录与空间记忆有关的数百万神经细胞中的一小部分细胞的活动。科学家相信,一旦能够对上述所有细胞进行监测,必将在记忆机制的认知方面实现巨大飞跃。

因此,英国伦敦大学学院的神经科学家Demis Hassabis和Eleanor Maguire及其同事转而求助于功能磁共振成像(fMRI)技术,这种技术能够通过血流变化监测大脑活动。研究人员要求4名男志愿者在两间由虚拟程序形成的房间内游走,并且在8个具有不同标记的位置反复停留;与此同时,fMRI则对志愿者大脑中的海马体区域进行了扫描。早在2000年,其中的一些研究人员曾发现,与其他成年男性相比,伦敦出租车驾驶员——所谓的导航大师——的海马体后部要更大,并且形状也异于前者,这说明大脑中的这一区域对于空间记忆来说是很重要的。

【18】2014诺贝尔生理学或医学奖获得者研究简介

科学家John O'Keefe 、May-Britt Moser、Edvard I. Mosel 的研究成果解决了科学家长期以来的一大问题,即机体大脑如何绘制周围环境的图谱以及我们如何在复杂的环境中进行导航。

研究者May-Britt Moser和Edvard Moser教授2005年时在大脑的内嗅皮层中发现了特殊的神经细胞-网格细胞,当大鼠通过特定位置时这些细胞就会被激活表达,同时网格细胞的位置就会形成一种六角网格,每个网格细胞都会在特定的空间位置上产生反应,最后这些网格细胞就会形成一种可以实现空间导航的坐标系统。

网格细胞可以和内嗅皮层中的其它细胞识别动物头部的方向以及房间的边界,从而在大脑海马体中形成空间细胞的网络系统,这些细胞网络回路就会形成一种复杂深入的定位系统,即大脑内置GPS,人类大脑中的GPS系统和大鼠大脑中的GPS系统具有相似的组分。

作者:
医学百科App—中西医基础知识学习工具
  • 相关内容
  • 近期更新
  • 热文榜
  • 医学百科App—健康测试工具