Literature
首页药品天地专业药学中药大全中药指纹图谱

大孔树脂在中药成分分离中的应用

来源:www.zyzwtp.com
摘要:大孔树脂是一种不溶于酸、碱及各种有机溶剂的有机高分子聚合物,应用大孔树脂进行分离的技术是20世纪60年代末发展起来的继离子交换树脂后的分离新技术之一。大孔树脂的孔径与比表面积都比较大,在树脂内部具有三维空间立体孔结构,由于具有物理化学稳定性高、比表面积大、吸附容量大、选择性好、吸附速度快、解吸条件温和、......

点击显示 收起

     大孔树脂是一种不溶于酸、碱及各种有机溶剂的有机高分子聚合物,应用大孔树脂进行分离的技术是20世纪60年代末发展起来的继离子交换树脂后的分离新技术之一。大孔树脂的孔径与比表面积都比较大,在树脂内部具有三维空间立体孔结构,由于具有物理化学稳定性高、比表面积大、吸附容量大、选择性好、吸附速度快、解吸条件温和、再生处理方便、使用周期长、宜于构成闭路循环、节省费用等诸多优点,本文从大孔树脂的性质、分离原理、影响吸附及解吸的因素、树脂的预处理及再生方法、溶剂残留等方面对大孔吸附树脂进行了评述,以期为大孔吸附树脂在中药有效成分分离中的应用提供参考。

1 大孔树脂的性质及分离原理

     大孔吸附树脂主要以苯乙烯、а-甲基苯乙烯、甲基丙烯酸甲酯、丙腈等为原料加入一定量致孔剂二乙烯苯聚合而成,多为球状颗粒,直径一般在0.3~1.25mm之间,通常分为非极性、弱极性和中极性,在溶剂中可溶胀,室温下对稀酸、稀碱稳定。从显微结构上看,大孔吸附树脂包含有许多具有微观小球的网状孔穴结构,颗粒的总表面积很大,具有一定的极性基团,使大孔树脂具有较大的吸附能力;另一方面,这些网状孔穴的孔径有一定的范围,使得它们对通过孔径的化合物根据其分子量的不同而具有一定的选择性。通过吸附性和分子筛原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定的溶剂洗脱而达到分离的目的。

2 吸附及解吸的影响因素

2.1 树脂结构的影响大孔树脂的吸附性能主要取决于吸附剂的表面性质,即树脂的极性(功能基)和空间结构(孔径、比表面积、孔容),一般非极性化合物在水中可以为非极性树脂吸附,极性树脂则易在水中吸附极性物质。刘国庆等在研究大孔树脂对大豆乳清废水中异黄酮的吸附特性时发现由于加热、碱溶工艺使一部分黄酮苷生成了苷元,故而非极性和弱极性大孔树脂有利于异黄酮的吸附,而且解吸容易。韩金玉等研究了5种大孔树脂发现弱极性树脂AB 8适合银杏内酯和白果内酯的分离。潘见等研究了10种大孔树脂发现,极性和弱极性树脂有利于葛根异黄酮的吸附与解吸且较高的比表面积、较大的孔径、较小的孔容有利于吸附。

2.2 被吸附的化合物结构的影响一般来说,被吸附化合物的分子量大小和极性的强弱直接影响到吸附效果。欧来良等研究发现葛根素的分子结构有一个极性糖基(Glu)和一个非极性黄酮母核,结构总体显示弱极性,同时又具有酚羟基结构,可以作为一个良好的氢键供体,所以弱极性且具有氢键受体结构的吸附树脂,对葛根素具有较好的分离效果。同时,大孔树脂本身就是一种分子筛,可按分子量的大小将物质分离,如潘见等发现对于分子量较大的葛根黄酮各组分孔径小于10nm的树脂吸附量都不高。朱浩等探讨了LD605型大孔树脂纯化具有不同母核结构有效部位的特性,发现以药材计吸附能力,生物碱>黄酮>酚性成分>无机物,以指标成分计,为黄酮>生物碱>酚性成分>无机物。

2.3 洗脱剂的影响通常情况下洗脱剂极性越小,其洗脱能力越强,一般先用蒸馏水洗脱,再用浓度逐渐增高的乙醇、甲醇洗脱。多糖、蛋白质、鞣质等水溶性杂质会随着水流下,极性小的物质后下。对于有些具有酸碱性的物质还可以用不同浓度的酸、碱液结合有机溶剂进行洗脱。任海等研究发现大孔树脂提取分离麻黄碱时盐酸的洗脱效果明显优于有机溶剂,而0.02mol/L的盐酸与甲醇不同比例混合时洗脱率明显提高。朱英等用大孔树脂分离油茶皂苷和黄酮时发现20%、30%乙醇洗脱液主要含黄酮,40%、50%、95%主要含油茶皂苷。

2.4 pH值的影响中药中的许多成分有一定的酸碱性,在pH值不同的溶液中溶解性不同,在应用大孔树脂处理这一类成分时pH值的影响显得至关重要。对于碱性物质一般在碱液中吸附酸液中解吸,酸性物质一般在酸液中吸附碱液中解吸,例如麻黄碱,任海发现在pH为11.0时吸附最好,为5.0、7.0时由于麻黄碱已质子化吸附量极少。但也有例外,如黄建明[8]对草乌生物碱进行考察时发现pH对SIP1300型大孔树脂无显著影响。

2.5 温度的影响大孔树脂的吸附作用主要是由于它具有巨大的表面积,是一种物理吸附,低温不利于吸附,但在吸附过程中又会放出一定的热量,所以操作温度对其吸附也有一定的影响。潘廖明等对LSA8型树脂进行吸附动力学及热力学特性的研究,得到该树脂在不同温度下对大豆异黄酮的吸附等温线,分析知该树脂在35℃时对大豆异黄酮具有较好的吸附效果。

2.6 原液浓度的影响原液浓度也是影响吸附的重要因素,黄建明等研究表明如果原液浓度过低提纯时间增加,效率降低;原液浓度过高则泄漏早,处理量小,树脂的再生周期短。韩金玉等研究表明AB 8树脂对银杏总内酯的吸附率先随浓度的增加而增加。达到一定值后再随浓度增加而减小,而总吸附量则随浓度的增大而增大,达到一定值后基本不再变化。

2.7 其它影响因素药液在上柱之前一般要经过预处理,预处理不好则会使大孔树脂吸附的杂质过多,从而降低其对有效成分的吸附。洗脱液的流速、树脂的粒径、树脂柱的高度也会产生一些影响,通常较高的洗脱液流速、较小的树脂粒径和较低的树脂高度有利于增大吸附速度,但同时也使单柱的吸附量有所降低。玻璃柱的粗细也会影响分离效果,当柱子太细,洗脱时,树脂易结块,壁上易产生气泡,流速会逐渐降为零。

3 大孔吸附树脂的预处理及再生大孔树脂一般含有未聚合的单体、制孔剂、引发剂及其分解物、分散剂和防腐剂等脂溶性杂质,使用前应先预处理。一般选用甲醇、乙醇或丙酮连续洗涤数次,洗至加适量水至无白色浑浊现象,再用蒸馏水洗至无醇味即可。必要时还要用酸碱液洗涤,最后用蒸馏水洗至中性即可。树脂用久了吸附的杂质就会增多,降低其吸附能力,故使用一段时间后需要再生。树脂的再生通常可以用溶剂来实现,乙醇是常用的再生剂。采用80%左右的含水醇、酮或含有酸、碱的含水醇、酮进行洗涤,再生效果也很好,某些低极性的有机杂质,可采用低极性溶剂进行再生。

4 有机溶剂残留的控制大孔树脂技术已经列为国家“十五”期间重点推广技术,但大孔树脂有机溶剂残留物的安全问题存在很多争论,因此国家药监局规定对大孔树脂可能带来的有机溶剂残留物进行检测,对其残留量加以控制。袁海龙等采用毛细管气相色谱法,配以顶空进样对D 101大孔树脂可能带来的7种残留物进行测定取得了很好的效果。陆宇照等的研究也表明以醇处理及酸碱处理好的D 101型大孔树脂提取中药是安全可靠的。

5 大孔吸附树脂在中药成分研究中的应用目前,在中药有效成分的提取研究方面应用大孔树脂最多的是黄酮(苷)类、皂苷类和其它苷类、生物碱类,在游离蒽醌、酚类物质、微量元素等方面的研究中也有用到。

5.1 黄酮(苷)类最有代表性的是银杏叶提取物(GBE),陈冲等[14]应用大孔树脂提取GBE,既达到其质量标准,又降低了成本。史作清等又研制出ADS 17、ADS 21、ADS F8等大孔树脂,其中ADS 17对黄酮类化合物具有很好的选择性,可得到黄酮甙含量较高的GBE。陆志科等研究了大孔树脂吸附分离竹叶黄酮的特性,选择6种大孔吸附,比较其对竹叶黄酮的吸附性能及吸附动力学过程,发现AB 8树脂较宜于竹叶黄酮的提纯,经AB 8树脂吸附分离后,提取物中黄酮含量提高一倍以上。

5.2 皂苷和其它苷类大孔树脂在苷类的提取纯化工艺中应用很多。如蔡雄等对D101型大孔吸附树脂富集纯化人参总皂苷的吸附性能与洗脱参数进行了研究,结果表明以50%乙醇洗脱,人参总皂苷洗脱率在90%以上,干燥后总固形物中人参总皂苷纯度达60.1%。李朝兴等通过对7种吸附树脂进行筛选实验,通过对树脂孔径和比表面积的比较发现AASI-2树脂对绞股蓝皂苷的吸附量大,速率快,且易于洗脱,回收率高。李庆勇等考察大孔树脂提取刺五加中的丁香苷的最佳工艺发现刺五加苷最好的提取方法是以水为溶剂,常温超声波提取,浓缩后,用HPLC检测丁香苷含量,按照丁香苷与干树脂质量比0.021的量向浓缩液中加入树脂,缓慢搅拌吸附1h,吸附平衡时间约1h,离心,滤出树脂,装柱,用体积分数为20%的乙醇-二氯甲烷混合溶剂洗脱,收集洗脱液,再经冷冻干燥处理,得产物。

5.3 生物碱类罗集鹏等采用大孔树脂对黄连药材及其制剂中的小檗碱进行了富集,研究表明含0.5%硫酸的50%甲醇解吸能力好,平均回收率达100.03%,符合中药材及其制剂中有效成分定量分析要求,故可用于黄连药材及其制剂中的小檗碱的富集及除杂。张红等考察了7种大孔树脂发现AB-8吸附及解吸效果较好,是一种较适宜的吸附剂,并对其工艺进行考察,结果27℃、1mol/L盐离子浓度、pH8的水相为最佳上样条件,洗脱剂为pH3的氯仿 乙醇(1∶1)混合溶剂。秦学功、元英进应用DF01型树脂能直接从苦豆籽浸取液中吸附分离生物碱,在室温、吸附液pH为10,NaCl浓度为1.0mol/L,吸附流速为5BV/h条件下,对总生物碱的吸附量可达到17mg/mL以上。在室温、2.5BV/h的解吸流速下,以pH为3,80∶20的乙醇 水为解吸液,可使解吸率达到96%以上。

5.4 其它黄园等用明胶沉淀法、醇调pH值法、聚酰胺法以及大孔吸附树脂法对大黄提取液中总蒽醌进行纯化,研究表明4种纯化方法所得纯化液的固体物收率明显降低,而对总蒽醌的保留率具有显著的差异,以ResinⅠ、Ⅱ两种大孔吸附树脂最高(93.21%,95.63%)。

叶毓琼、黄荣对绞股兰水煎液中的微量元素铁、铜、锰、锌的6种形态(悬浮态、可溶态、稳定态、不稳定态、有机态、无机态)进行形态分析时应用AmberliteXAD 2大孔吸附树脂分离有机态和无机态,发现溶液pH4.5时回收率较理想,无机淋洗剂为1%硝酸,有机淋洗剂应用乙醇 甲醇 6mol/L氨水体系。

李进飞等选用NKA 9树脂从杜仲叶中分离富集绿原酸得出NKA 9树脂对提取液中绿原酸的最佳分离条件为:当进样液浓度低于0.3mg/mL、pH3、流速2mg/mL时,用50%乙醇洗脱,得到粗产品纯度为25.12%,收率为78.5%。

邓少伟、马双成将川芎醇提物减压浓缩,过大孔树脂柱,先用水洗至还原糖反应呈阴性,再用30%乙醇洗脱,收集30%乙醇洗脱液,减压浓缩得川芎总提物,其中川芎嗪和阿魏酸的含量约占本品的25%~29%。

作者: 2006-4-1
医学百科App—中西医基础知识学习工具
  • 相关内容
  • 近期更新
  • 热文榜
  • 医学百科App—健康测试工具