Literature
Home医药经济生物技术技术要闻

人造肌肉还原真实色彩

来源:环球科学
摘要:人造肌肉是一种在电场的作用下能够伸缩的塑料,在电视和电脑屏幕里,它可以产生真正的逼真色彩。他们采用了反射式衍射光栅组成的阵列。光栅是一种微小的光学元件,它们的表面布满一系列纤细、平行和等距的凹槽。”为了检验这种概念的可行性,两位研究者制造了一个包含10个像素的光栅阵列,每一个像素都是一个衍射光栅。...

点击显示 收起

        人造肌肉是一种在电场的作用下能够伸缩的塑料,在电视和电脑屏幕里,它可以产生真正的逼真色彩。在未来10年内,以这些材料为基础制造的微小的“可调棱镜”,就会出现在改进型显示器上,充当起像素的角色。

        现有的显示设备,比如电视显像管、液晶显示屏或等离子显示器,都不能完全再现人类能看到的所有颜色。这些屏幕上的每个像素都由3个发光元件构成,每个元件发出三原色(fundamental  color,即红、绿、蓝三色)中的一种。显示器将不同亮度的三种颜色混合在一起,就能产生其他的颜色,不过这种方式得到的颜色范围受到限制。

        瑞士联邦理工学院苏黎世分校的曼纽尔·阿什万登(Manuel  Aschwanden)和安德里亚·施特默尔(Andreas  Stemmer),研制出了一种给屏幕染色的新方法。他们采用了反射式衍射光栅组成的阵列。光栅是一种微小的光学元件,它们的表面布满一系列纤细、平行和等距的凹槽。这些凹槽可以像棱镜一样,把白光分解为缤纷的彩虹。阿什万登说:“拿起一张光盘,用底面斜对着阳光,你就能看到同样的效果:阳光在规则刻划的表面上,反射成了七彩虹光。”

        为了检验这种概念的可行性,两位研究者制造了一个包含10个像素的光栅阵列,每一个像素都是一个衍射光栅。阿什万登解释说,白光先照射到一个边长约75微米的光栅上。在光栅表面一层薄薄的聚合物膜上,浇铸着一条条间距1微米的凹槽。施加不同的电压,光栅就会膨胀或收缩,这样照射进来的光线遇到的凹槽就会时疏时密。这种效果改变了光线被反射回去的角度,因而使反射形成的七彩虹光的位置发生明显的偏移。在光栅的前面放上遮光板,只留出一个小孔,这个系统就能分离出特定的颜色,只让这种色彩透过小孔射出来。改变电压,使不同颜色的光对准小孔,系统就能显示不同的色彩。

        为了在一个标准显示器上显示复合色(composite  color),每一个像素将由两个或多个衍射光栅组成。这是必需的,因为一些颜色并不出现在白光分解而成的七彩虹光之中,比如棕色就是如此。

        阿什万登说,虽然这个系统还太小,无法实际应用,但是它的像素密度却和一个高质量液晶显示器相同。他也坦然承认,他的发明要想应用到某种视频产品上,还有很长的路要走。他们制作的下一个原型系统,将是一个拥有400个光栅的阵列。目前他们“显示器”的工作电压是300伏特,比家庭用电的电压高很多,不过现在正在研制的新材料将会降低这个工作电压。

        美国斯坦福大学的电子工程师、硅光机械公司(Silicon  Light  Machines)创始人之一、微光电子技术的开拓者奥拉夫·索尔高(Olav  Solgaard)评论说:“这是彩色显像领域一个非常有趣的成果,不过要达到实用水平,它还需要面对非常严峻的技术挑战。”他列举了几个潜在的技术障碍,比如,为了取得良好的对比度,该如何产生所谓的“全黑像素”;再比如,考虑到光栅“丢弃了相当一部分光线”,又该如何有效地维持图像的亮度。对于被动显示器,也就是那些把周围的白光反射成图像的显示器来说,这项技术也许非常有用,它们可以被应用到手机上。

        不管怎么说,苏黎士的研究人员并没有局限在显示器上,他们正在开拓其他的应用领域。他们已经研制出一台高分辨率显微镜的原型样机,其原理是,利用人造肌肉膜改变单色光束的方向。“对光线进行调整或变向,是许多光学系统的基础,”阿什万登强调,“这一成果为完成这些任务提供了一种便宜而且精准的方法。”
作者:
医学百科App—中西医基础知识学习工具
  • 相关内容
  • 近期更新
  • 热文榜
  • 医学百科App—健康测试工具